Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cureus ; 14(11): e31897, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2203348

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has disrupted the world since 2019, causing significant morbidity and mortality in developed and developing countries alike. Although substantial resources have been diverted to developing diagnostic, preventative, and treatment measures, disparities in the availability and efficacy of these tools vary across countries. We seek to assess the ability of commercial artificial intelligence (AI) technology to diagnose COVID-19 by analyzing chest radiographs. MATERIALS AND METHODS: Chest radiographs taken from symptomatic patients within two days of polymerase chain reaction (PCR) tests were assessed for COVID-19 infection by board-certified radiologists and commercially available AI software. Sixty patients with negative and 60 with positive COVID reverse transcription-polymerase chain reaction (RT-PCR) tests were chosen. Results were compared against results of the PCR test for accuracy and statistically analyzed by receiver operating characteristic (ROC) curves along with area under the curve (AUC) values. RESULTS: A total of 120 chest radiographs (60 positive and 60 negative RT-PCR tests) radiographs were analyzed. The AI software performed significantly better than chance (p = 0.001) and did not differ significantly from the radiologist ROC curve (p = 0.78). CONCLUSION: Commercially available AI software was not inferior compared with trained radiologists in accurately identifying COVID-19 cases by analyzing radiographs. While RT-PCR testing remains the standard, current advances in AI help correctly analyze chest radiographs to diagnose COVID-19 infection.

2.
BMC Infect Dis ; 22(1): 637, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1951104

ABSTRACT

BACKGROUND: Airspace disease as seen on chest X-rays is an important point in triage for patients initially presenting to the emergency department with suspected COVID-19 infection. The purpose of this study is to evaluate a previously trained interpretable deep learning algorithm for the diagnosis and prognosis of COVID-19 pneumonia from chest X-rays obtained in the ED. METHODS: This retrospective study included 2456 (50% RT-PCR positive for COVID-19) adult patients who received both a chest X-ray and SARS-CoV-2 RT-PCR test from January 2020 to March of 2021 in the emergency department at a single U.S. INSTITUTION: A total of 2000 patients were included as an additional training cohort and 456 patients in the randomized internal holdout testing cohort for a previously trained Siemens AI-Radiology Companion deep learning convolutional neural network algorithm. Three cardiothoracic fellowship-trained radiologists systematically evaluated each chest X-ray and generated an airspace disease area-based severity score which was compared against the same score produced by artificial intelligence. The interobserver agreement, diagnostic accuracy, and predictive capability for inpatient outcomes were assessed. Principal statistical tests used in this study include both univariate and multivariate logistic regression. RESULTS: Overall ICC was 0.820 (95% CI 0.790-0.840). The diagnostic AUC for SARS-CoV-2 RT-PCR positivity was 0.890 (95% CI 0.861-0.920) for the neural network and 0.936 (95% CI 0.918-0.960) for radiologists. Airspace opacities score by AI alone predicted ICU admission (AUC = 0.870) and mortality (0.829) in all patients. Addition of age and BMI into a multivariate log model improved mortality prediction (AUC = 0.906). CONCLUSION: The deep learning algorithm provides an accurate and interpretable assessment of the disease burden in COVID-19 pneumonia on chest radiographs. The reported severity scores correlate with expert assessment and accurately predicts important clinical outcomes. The algorithm contributes additional prognostic information not currently incorporated into patient management.


Subject(s)
COVID-19 , Deep Learning , Adult , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Prognosis , Radiography, Thoracic , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , X-Rays
3.
Acad Radiol ; 29(8): 1178-1188, 2022 08.
Article in English | MEDLINE | ID: covidwho-1773051

ABSTRACT

RATIONALE AND OBJECTIVES: The burden of coronavirus disease 2019 (COVID-19) airspace opacities is time consuming and challenging to quantify on computed tomography. The purpose of this study was to evaluate the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes associated with COVID-19 pneumonia. MATERIALS AND METHODS: A previously trained dCNN was tested on an external validation cohort of 241 patients who presented to the emergency department and received a chest computed tomography scan, 93 with COVID-19 and 168 without. Airspace opacity scoring systems were defined by the extent of airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were concurrently evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw opacity values were used in the prediction of COVID-19 diagnosis and inpatient outcomes. RESULTS: Interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). Probability of each outcome behaved as a logistic function of the opacity scoring (25% intensive care unit admission at score of 13/25, 25% intubation at 17/25, and 25% mortality at 20/25). Length of hospitalization, intensive care unit stay, and intubation were associated with larger airspace opacity score (p = 0.032, 0.039, 0.036, respectively). CONCLUSION: The tested dCNN was highly predictive of inpatient outcomes, performs at a near expert level, and provides added value for clinicians in terms of prognostication and disease severity.


Subject(s)
COVID-19 , Deep Learning , Algorithms , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Inpatients , Lung/diagnostic imaging , Morbidity , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL